作者:梁菁菁 | 发布者:梁菁菁 | 时间:2020-04-08 18:55:02 | 学段:高中二年级 | 学科:数学 | 上下册:上册
【评论:1】【查看次数:6】【精华数:】
§1.1 第1课时 算法的含义
教学目标:1.通过实例体会算法思想,了解算法的含义与主要特点;
2.能按步骤用自然语言写出简单问题的算法过程学;
3.培养学生逻辑思维能力与表达能力.
教学重点:将问题的解决过程用自然语言表示为算法过程.
教学难点:用自然语言描述算法.
教学过程
一.序言
算法不仅是数学及其应用的重要组成部分,也是计算机理论和技术的核心.在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机几乎渗透到了人们生活的所有领域.那么,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始.同时,算法有利于发展有条理的思考与表达的能力,提高逻辑思维能力.
在以前的学习中,虽然没有出现算法这个名词,但实际上在数学教学中已经渗透了大量的算法思想,如四则运算的过程、求解方程的步骤等等,完成这些工作都需要一系列程序化的步骤,这就是算法的思想.
阅读教材第4页.
二.问题情境
1.情境:介绍猜数游戏(见教材第5页).
2.问题:解决这一问题有哪些策略,哪一种较好?
三.学生活动
学生容易说出“二分法策略”,教师要引导学生进行算法化(按步骤)的表达.
说明:以上过程实际上是按一种机械的程序进行的一系列操作.
四.建构数学
在解决某些问题时,需要设计出一系列可操作或可计算的步骤,通过实施这些步骤来解决问题,通常把这些步骤称为解决这些问题的算法.
1.广义的算法——某一工作的方法和步骤,例如:歌谱是一首歌曲的算法,空调说明书是空调使用的算法.
在数学中,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题的程序.
2.本章主要讨论的算法(计算机能够实现的算法)——对一类问题的机械的、统一的求解方法.例如:解方程(组)的算法,函数求值的算法,作图问题的算法等.
3.本节采用自然语言来描述算法.
五.数学运用
1.算法描述举例
例1.给出求1+2+3+4+5的一个算法.
解: 算法1 按照逐一相加的程序进行.
第一步:计算1+2,得到3;
第二步:将第一步中的运算结果3与3相加,得到6;
第三步:将第二步中的运算结果6与4相加,得到10;
第四步:将第三步中的运算结果10与5相加,得到15.
算法2 运用公式直接计算.
第一步:取=5;
第二步:计算;
第三步:输出运算结果.
算法3 用循环方法求和.
第一步:使,;
第二步:使;
第三步:使;
第四步:使;
第五步:如果,则返回第三步,否则输出.
说明:①一个问题的算法可能不唯一.
②若将本例改为“给出求的一个算法”,则上述算法2和算法3表达较为方便.
例2.给出求解方程组的一个算法.
分析:解线性方程组的常用方法是加减消元法和代入消元法,这两种方法没有本质的差别,为了适用于解一般的线性方程组,以便于在计算机上实现,我们用高斯消元法(即先将方程组化为一个三角形方程组,在通过回代过程求出方程组的解)解线性方程组.
解:用消元法解这个方程组,步骤是:
第一步:方程①不动,将方程②中的系数除以方程①中的系数,得到乘数;
第二步:方程②减去乘以方程①,消去方程②中的项,得到
;
第三步:将上面的方程组自下而上回代求解,得到,.
所以原方程组的解为.
说明:(1).从例1、例2可以看出,算法具有两个主要特点:
①有限性:一个算法在执行有限个步骤后必须结束.
“有限性”往往指在合理的范围之内,如果让计算机执行一个历时1000年才结束的算法,这虽然是有限的,但超过了合理的限度,人们也不把它视作有效算法.“合理限度”一般由人们的常识和需要以及计算机的性能而定.
②确定性:算法的每一个步骤和次序应当是确定的.
例如,一个健身操中一个动作“手举过头顶”,这个步骤就是不确定的、含糊的.是双手都举过头,还是左手或右手?举过头顶多少厘米不同的人可以有不同的理解.算法中的每一个步骤不应产生歧义,而应当是明确无误的.
(2).一般来说,算法应有一个或多个输出,算法的目的是为了求解,没有输出的算法是没有意义的.
2.练习:课本第6页练习第1、2、3题.
练习1答案:第一步 移项得;
第二步 两边同除以2得.
练习2答案:第一步:使,;
第二步:使;
第三步:使;
第四步:使;
第五步:如果,则返回第三步,否则输出.
练习3答案:第一步 计算斜率;
第二步 用点斜式写出直线方程.
补充:
1.一个人带三只狼和三只羚羊过河,只有一条船,同船可以容纳一个人和两只动物.没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊.请设计过河的算法.
解:算法或步骤如下:
S1 人带两只狼过河;
S2 人自己返回;
S3 人带一只羚羊过河;
S4 人带两只狼返回;
S5 人带两只羚羊过河;
S6 人自己返回;
S7 人带两只狼过河;
S8 人自己返回;
S9 人带一只狼过河.
2.写出求的一个算法.
解:第一步:使,;
第二步:使;
第三步:使;
第四步:使;
第五步:使;
第六步:如果,则返回第三步,否则输出.
六.回顾小结
1.算法的概念:对一类问题的机械的、统一的求解方法.算法是由基本运算及规定的运算顺序所构成的完整的解题步骤,或者是按照要求设计好的有限的计算序列,并且这样的步骤或序列能解决一类问题.
2.算法的重要特征:
(1)有限性:一个算法在执行有限步后必须结束;
(2)确切性:算法的每一个步骤和次序必须是确定的;
(3)输入:一个算法有0个或多个输入,以刻划运算对象的初始条件.所谓0个输入是指算法本身定出了初始条件.
(4)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果.没有输出的
算法是毫无意义的.
七、课外作业:
课本第6页第4题,
补充:
1. 有A、B、C三个相同规格的玻璃瓶,A装着酒精,B装着醋,C为空瓶,请设计一个算法,把A、B瓶中的酒精与醋互换.
2.写出解方程的一个算法.
3.已知,,写出求直线AB斜率的一个算法.
4.“鸡兔同笼”是我国隋朝时期的数学著作《孙子算经》中的一个有趣而具有深远影响的题目:
“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”
请你先列出解决这个问题的方程组,并设计一个解该方程组的算法.
八、课后反思:
王子怡(发表于 2020/4/16 19:18:29)
很好,很赞