来源:搜集和修改 | 作者:拜热扎提·啊布都克热木 | 发布者:拜热扎提·啊布都克热木 | 时间:2020-02-26 23:18:09 | 学段:初中 | 学科:数学 | 上下册:下册
【评论:0】【查看次数:0】【精华数:】
人教版初中数学平行线的性质教案2.3平行线的性质
一、教材分析:
本节课是人民教育出版社义务教育课程标准实验教科书(五四学制)七年级上册第2章 第3节 平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是?空间与图形?的重要组成部分。
二、教学目标:
1.知识与技能:掌握平行线的性质,能应用性质解决相关问题。 数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
2.解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。
3.情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神。
三、教学重、难点:
重点:平行线的性质
难点:?性质1?的探究过程
四、教学方法:
?引导发现法?与?动像探索法?
五、教具、学具:
教具:多媒体课件
学具:三角板、量角器。
六、教学媒体:大屏幕、实物投影
七、教学过程:
(一)创设情境,设疑激思:
1.播放一组幻灯片。内容:①火车行驶在铁轨上;②游泳池;③横格纸。
2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?
学生活动:
思考回答。①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;
教师:首先肯定学生的回答,然后提出问题。
问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?
引出课题——平行线的性质。
(二)数形结合,探究性质
1.画图探究,归纳猜想
任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图)。
问题一:指出图中的同位角,并度量这些角,把结果填入下表:第一组
第二组
第三组
第四组
同位角
∠1
∠5
角的度数
数量关系
学生活动:画图——度量——填表——猜想
结论: 两直线平行,同位角相等。
问题二:再画出一条截线d,看你的猜想结论是否仍然成立? 学生:探究、讨论,最后得出结论:仍然成立。
2.教师用《几何画板》课件验证猜想
3.性质1. 两条直线被第三条直线所截,同位角相等。(两直线平行,同位角相等)
(三)引申思考,培养创新
问题三:请判断内错角、同旁内角各有什么关系?
学生活动:独立探究——小组讨论——成果展示。
教师活动:评价,引导学生说理。
因为a‖b因为a‖b
所以∠1=∠2所以∠1=∠2
又∠1=∠3又∠1+∠4=180°
所以∠2=∠3所以∠2+∠4=180°
语言叙述:
性质2两条直线被第三条直线所截,内错角相等。 (两直线平行,内错角相等)
性质3两条直线被第三条直线所截,同旁内角互补。 (两直线平行,同旁(请你继续关注好:)内角互补)
(四)实际应用,优势互补
1.(抢答)
(1)如图,平行线ab、cd被直线ae所截
①若∠1 = 110°,则∠2 =°。理由:。 ②若∠1 = 110°,则∠3 =°。理由:。 ③若∠1 = 110°,则∠4 =°。理由:。
(2)如图,由ab‖cd,可得()
(a)∠1=∠2(b)∠2=∠3
(c)∠1=∠4(d)∠3=∠4
(3)如图,ab‖cd‖ef, 那么∠bac+∠ace+∠cef=(
(a)180°(b)270° (c)360° (d)540°
(4)谁问谁答:如图,直线a‖b,
如:∠1=54°时,∠2=.
学生提问,并找出回答问题的同学。
2.(讨论解答)
如图是一块梯形铁片的残余部分,量得∠a=100°,∠b=115°,求)
梯形另外两角分别是多少度?
(五)概括存储(小结)
1.平行线的性质1、2、3;
2.用?运动?的观点观察数学问题;
3.用数形结合的方法来解决问题。
(六)作业第69页2、4、7.
八、教学反思:
①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。在引导学生画图、测量、发现结论后,利用几何画板直观地、动态地展示同位角的关系,激发学生自觉地探究数学问题,体验发现的乐